

An Efficient Formal Synthesis of the Human Telomerase Inhibitor (\pm)- γ -Rubromycin**

Dominea C. K. Rathwell, Sung-Hyun Yang, Kit Y. Tsang, and Margaret A. Brimble*

γ-Rubromycin^[1] (1, Scheme 1), the prototypical member of a structurally related family of antibiotics known as the rubromycins, consists of a densely oxygenated naphthazarin ring and an isocoumarin moiety linked through a unique aromatic 5,6-spiroketal ring system (Scheme 1). The rubromycins exhibit a wide range of biological activity including

 γ -rubromycin (1): R¹= R²= R³= H purpuromycin (4): R¹= R²= H, R³= OH heliquinomycin (5): R¹= O-cymarose, R²=OH, R³=H

MeO OH O OH O
$$CO_2Me$$

$$OMe O$$

$$\beta$$
-rubromycin (2)

Scheme 1. Selected natural products of the rubromycin class of antibiotics.

antimicrobial and anticancer properties. $^{[1-6]}$ β -Rubromycin (2) and γ -rubromycin display potent activity against human telomerase ($IC_{50}=3~\mu M$), the reverse transcriptase of HIV-1, and the moloney murine leukemia virus. $^{[4-7]}$ α -Rubromycin (3), the only member of the group to lack the aryl spiroketal moiety, exhibits substantially decreased inhibitory potency towards telomerase ($IC_{50}>200~\mu M$), which suggests that the spiroketal core is an essential pharmacophore for the inhibition of telomerase. $^{[4]}$ Purpuromycin (4), $^{[8]}$ a potential topical agent for vaginal infections, $^{[2]}$ and heliquinomycin (5), a selective inhibitor of DNA helicase are structurally related to the rubromycins. $^{[6]}$ Thus, 56 years since the isolation of 1, the rubromycins still attract considerable synthetic efforts because of their unprecedented structures and intriguing pharmacological profile. $^{[5]}$ Numerous syntheses of the naph-

[*] D. C. K. Rathwell, S.-H. Yang, K. Y. Tsang, Prof. Dr. M. A. Brimble Department of Chemistry, The University of Auckland 23 Symonds Street, Auckland (New Zealand) Fax: (+64) 9-373-7422 http://www.che.auckland.ac.nz/staffsites/BrimbleM/ E-mail: m.brimble@auckland.ac.nz

[**] We thank the New Zealand Foundation for Research, Science and Technology for the award of a Top Achiever Doctoral Scholarship to K.Y.T. and D.C.K.R. We are also grateful to Profs. Y. Kita and Fujioka for providing an authentic sample of 6.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200903316.

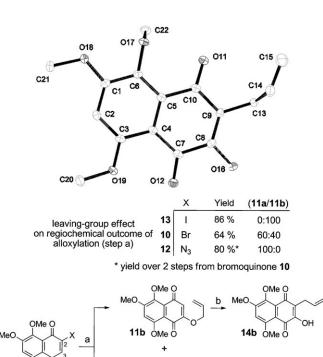
thalene^[9-11] and isocoumarin^[12] fragments together with model doubly benzannelated^[13-16] and naphthyl-benzannelated^[11,15] spiroketal systems have been reported. However, only two successful total syntheses have been achieved to date, namely, the aglycon of (\pm) -5 by Danishefsky and coworkers, ^[17] in which spiroketalization of a hemiketal occurred under Mitsunobu conditions, and (\pm) -1 by Kita et al. ^[18] who used a double aromatic Pummerer-type reaction to install the spiroketal.

In spite of these investigations, an efficient and flexible strategy for the total synthesis of these natural products has not been forthcoming; the most striking problem in the synthesis is the acid-mediated spiroketalization to construct the unique 5,6-bisbenzannelated spiroketal core. Difficulties in the application of this seemingly straightforward approach to the natural product have been reported by the research groups of Danishefsky,^[17] Kozlowski,^[11] and Reißig^[5,16] in their respective synthetic efforts towards **5** and purpuromycin **4**. Through comprehensive modeling studies, Kozlowski, Reißig, and their respective co-workers concluded that the presence of electron-withdrawing groups in the isocoumarin unit markedly diminish the nucleophilicity of the phenolic hydroxyl group, a key factor that prohibits the critical spiroketalization step.^[5,11,16]

In previous studies, our research group has demonstrated that steric hindrance associated with the presence of methoxy groups at C-9' and C-10 (bis-ortho substituents) hamper the spirocyclization step to result in the undesired formation of the thermodynamically favored benzofuran. [19] We have also reported a mild, efficient deprotection and spiroketalization protocol that leads to the successful formation of the doubly benzannulated spiroketal. [19] Inspired by Reißig and co-workers, [5] who noted that with delicate electronic balancing of aromatic units the acid-promoted spiroketalization should be possible, we were convinced that use of a mild acid mediated spiroketalization step that pays due attention to the use of an appropriate isocoumarin ring precursor, should provide a practical method for the synthesis of the rubromycins and related analogues.

Herein, we report an efficient synthesis of Kita's pentacyclic spiroketal ${\bf 6}^{[18]}$ in which isocoumarin ring formation is delayed until after the key spiroketalization. This approach thus constitutes a formal synthesis of (\pm) - γ -rubromycin ${\bf 1}$ (Scheme 2). Elimination of the electron-withdrawing mesomeric effect on the eastern fragment of the advanced spiroketal precursor ${\bf 7}$ was expected to increase the nucleophilicity of the phenol, thus encouraging the key acid-mediated cyclization to form the D ring (see the insert in Scheme 2). Alkynol ${\bf 8}$ was synthesized by the Sonogashira acetylide coupling strategy^[14] that we developed to construct simpler aryl spiroketals, and was envisaged to be a flexible building block from which several members of the rubromycin family of antibiotics could be accessed.

Our initial attention focused on the development of an efficient route to the naphthazarin fragment **9** that has already challenged several research groups. [5,9-11] In the process, a novel allyloxylation/Claisen rearrangement strategy that facilitated regioselective *ipso* and *ortho* functionalization of 1,4-naphthoquinones was developed.


Zuschriften

Scheme 2. Retrosynthesis of 1.

The synthesis of naphthalene fragment 9 hinged on the Claisen rearrangement of allyloxynaphthoquinone 11a that started from the known bromoquinone 10^[10,20] (Scheme 3). Surprisingly, direct C-2 allyloxylation of bromoquinone 10 that would allow a subsequent Claisen rearrangement proved problematic. In preliminary studies, allyloxylation of bromoquinone 10 by formation of the sodium or potassium allyloxide was accompanied by degradation, and afforded 11a in poor yields (20–30%). Eventually, the facile allyloxylation of bromoquinone 10 using excess allyl alcohol and cesium carbonate took place, but disappointingly afforded a mixture of regioisomers 11a and 11b.

Normal substitution proceeds in an ipso fashion by a nucleophilic attack on the carbon bonded to the halogen (C-2) with subsequent expulsion of halide to give 11a, whilst similar nucleophilic attack on the adjacent carbon (C-3) gives an intermediate adduct which upon dehydrohalogenation affords the *cine*-substitution product **11 b**. The regiochemistry of 11b was determined by its conversion into the crystalline Claisen product 14b. A single-crystal X-ray structure was obtained for 14b, which confirmed the regiochemistry of the cine product 11b obtained from the allyloxylation. [21] After many unproductive attempts to improve the regiochemistry by activating the double bond of the quinone with iodine in the presence of transition metal salts (CeCl₃, [22] Cu(OAc)₂, [23] or HgO^[24]), we decided to investigate the effect of the leaving group (X) on the regiochemical outcome of the key allyloxylation step.

To this end, bromoquinone 10 was converted to azidoquinone 12 by using sodium azide, whilst iodoquinone 13 was prepared in a similar manner to bromoquinone 10 (leaving-group effect, Scheme 3). Pleasingly, the nature of the leaving group dramatically affected the regiochemical outcome of

OMe OMe
OMe Off
OEOM

Scheme 3. Top: X-ray crystal structure of **14b**. Thermal ellipsoids are set at 50% probability. Center: Leaving-group effect on the outcome of step a. Bottom: Synthesis of naphthazarin **9**: a) Cs_2CO_3 , allyl alcohol (excess), toluene, RT, 1 h, then filtration; b) microwave, 140°C, toluene, 1 h, 97%; c) NaN₃, MeCN, RT, 3 days, then filtration and evaporation; d) microwave, 140°C, toluene, 0.5 h, then evaporation; e) chloromethylethyl ether (EOMCl), iPr_2NEt , CH_2Cl_2 , $0^{\circ}C \rightarrow RT$, 70% from bromoquinone **10**; f) 1) Na₂S₂O₄, nBu_4NBr , THF/H_2O (1:1), 0.5 h; 2) Mel, Cs_2CO_3 , $Na_2S_2O_4$ (cat.), H_2 , DMF, $60^{\circ}C$, 2 h, $92^{\circ}K$; g) 2,6-lutidine, OsO₄ (cat.), NalO₄, dioxane/water (3:1), 90%.

this reaction. Azidoquinone 12 underwent clean conversion to the desired allyl ether 11a (normal substitution) as a single product, whilst iodoquinone 13 reacted cleanly to afford only the *cine* substitution product 11b. The high regioselectivity observed can be attributed to a combination of steric and bond-dipole effects. Thus, decreasing the steric bulk at the C-X bond ($I > Br \gg N_3$) facilitates the desired *ipso* substitution at C-2. Also, if one considers the azide fragment as a pseudohalogen (absolute electronegativity: I = 6.7, I = 7.5, I = 7.7, I = V), I = 1.5 increased I = 1.5 bond polarization may also lead to *ipso* attack being favored over *cine* substitution. While a limited number of examples of the use of azide as a leaving group have been reported, I = 1.5 its application to the synthesis of complex molecules remains relatively unexplored. In the present work, the highly substituted nature of the target

naphthazarin necessitated extension of our synthetic repertoire to the use of an azide leaving group.

Subsequently, microwave irradiation of allyl ether 11a was used to effect the desired Claisen rearrangement and delivered naphthol 14a, which was subsequently protected as an ethoxymethyl (EOM) ether 15. Significantly, the conversion of bromoquinone 10 to 15 only required one purification step and proceeded in 70% yield over four steps, thus facilitating an efficient large-scale synthesis. Reductive dimethylation of 15 required the careful use of a reductive environment (hydrogen atmosphere and sodium dithionite) using cesium carbonate as base to overcome the considerable steric constraints imposed when introducing additional alkoxy groups onto the heavily substituted naphthalene ring. One-pot oxidative cleavage^[27] of the terminal olefin 16 subsequently provided aldehyde 9.

The synthesis of isocoumarin precursor 17 commenced with commercially available guaiacol (18, Scheme 4). Paraselective bromination, followed by protection as an EOM

Scheme 4. Syntheses of isocoumarin precursors, iodide 23, and acetylene intermediate 17: a) NBS, DMF, 0°C, 0.5 h, 83%; b) EOMCl, iPr_2NEt , CH_2Cl_2 , $0^{\circ}C \rightarrow RT$, 89%; c) LDA, THF, $0^{\circ}C$, 0.5 h, then dimethyl malonate, 0°C, 0.5 h, then 19, THF, 0°C, 71%; d) NaHSO₄/ SiO₂, CH₂Cl₂, RT, 16 h, 92%; e) NaHCO₃, tetramethylammonium dichloroiodate, CH2Cl2, RT, 2 h, 51%; f) EOMCl, iPr2NEt, CH2Cl2, 0 °C \rightarrow RT, 93%; g) trimethylsilylacetylene, Et₃N, CuI (15 mol%), PPh₃ (25 mol%), Pd(OAc)₂ (10 mol%), DMF, RT, 16 h, 98%; h) K₂CO₃, THF/MeOH (1:1), RT, 1.5 h, 91%.

ether provided bromophenol 19, which was then converted to diester 20 by slow dropwise addition of LDA to dimethyl malonate followed by addition of bromide 19.[18,28] After removal of the EOM group, iodination of the resulting naphthol 21 with tetramethylammonium dichloroiodate afforded iodide 22. After reprotection as an EOM ether (23), Sonogashira coupling with trimethylsilylacetylene followed by desilylation under mild basic conditions provided the key acetylene coupling partner 17.

With the key naphthazarin 9 and isocoumarin precursor 17 fragments in hand, their union by acetylide addition was explored (Scheme 5). To our surprise, attempts to generate the lithiated acetylide of isocoumarin precursor 17 afforded adduct 24, which resulted from the aldol condensation of aldehyde 9 with the ester enolate derived from 17.

Accordingly, the coupling strategy for the naphthalene and isocoumarin fragments was revised (Scheme 6) so that iodide 23 (prepared as depicted in Scheme 4) was coupled to

Scheme 5. Attempted lithiated acetylide coupling: a) LiHMDS, THF, -78°C, 1 h, 41%.

Scheme 6. Completion of advanced spiroketal intermediate 6: a) ethynyl magnesium bromide (0.5 м in THF), THF, 0°C, 1 h, 90%; b) [Pd-(PPh₃)₄] (10 mol%), Cul (15 mol%), Cs₂CO₃, DMF, 6 h, 8 (91%), 26 (trace); c) Pd/C, H₂, NaHCO₃, EtOAc, 3 h, 99%; d) IBX, DMSO, 60°C, 0.5 h, 95%; e) NaHSO₄/SiO₂, CH₂Cl₂, RT, 4 h, 80%; f) 10% KOH, MeOH, $0^{\circ}C \rightarrow RT$, 16 h; g) cerium(IV) ammonium nitrate, MeCN/H₂O (5:1), 0°C, 0.5 h (58% over two steps).

acetylene 25 using a Sonogashira reaction. Aldehyde 9 was converted to the key propargyl alcohol fragment 25 by Grignard addition with ethynyl magnesium bromide. Pleasingly, Sonogashira reaction of key alkyne 25 with iodide 23 proceeded in an excellent yield using a non-amine base (cesium carbonate) and degassed solvents, in order to minimize formation of the homocoupled product 26. Hydrogenation of the resulting alkyne 8 in ethyl acetate buffered with sodium bicarbonate over 10% Pd/C then provided the saturated secondary alcohol in quantitative yield. Oxidation

8143

Zuschriften

of the alcohol with 2-iodoxybenzoic acid (IBX) in dimethyl-sulfoxide afforded ketone 7.

The valuable spiroketalization precursor **7** was then subjected to the mild spiroketalization conditions previously developed by our group for the synthesis of model aryl 5,6-spiroketals. Gratifyingly, treatment of ketone **7** with excess activated silica supported sodium hydrogen sulfate in dichloromethane at room temperature for 4 hours successfully afforded the desired spiroketal **27** in 80% yield. Finally, a selective hydrolysis of the aliphatic ester to the carboxylic acid and final adjustment of the oxidation states of the naphthalene unit furnished Kita's advanced intermediate **6**. The spectroscopic data of the synthetic material were in full agreement with those recorded for an authentic sample kindly provided by Professor Kita (see the Supporting Information).

In conclusion, we have completed an efficient formal total synthesis of (\pm) - γ -rubromycin (1) in 17 steps from 1,2,4-trimethoxybenzene. The synthesis is significantly shorter than Kita's approach^[18] and produces 1 in a much better overall yield. The present synthesis demonstrates the previously unrealized application of acid-mediated spiroketalization for the synthesis of the challenging rubromycin family of natural products. The synthetic route also makes the use of a novel regioselective allyloxylation of a 2-azido-1,4-naphthoquinone to facilitate a subsequent Claisen rearrangement. Further work will focus on extension of this synthetic strategy to the synthesis of purpuromycin (4) and naphthoquinone analogues thereof.

Received: June 19, 2009 Published online: July 30, 2009

Keywords: antibiotics · azides · natural product synthesis · spiroketals · total synthesis

- a) H. Brockmann, K. H. Renneberg, Naturwissenschaften 1953,
 40, 59-60; b) H. Brockmann, K. H. Renneberg, Naturwissenschaften 1953,
 40, 166-167; c) H. Brockmann, W. Lenk, G. Schwantje, A. Zeeck, Tetrahedron Lett. 1966,
 7, 3525-3530.
- [2] a) A. Trani, C. Dallanoce, G. Panzone, F. Ripamonti, B. P. Goldstein, R. Ciabatti, J. Med. Chem. 1997, 40, 967 971; b) B. P. Goldstein, A. King, F. Ripamonti, A. Trani, I. Phillips, J. Antimicrob. Chemother. 1995, 36, 1061 1065.
- [3] a) C. Coronell, H. Pagani, M. R. Bardone, G. C. Lancini, J. Antibiot. 1974, 27, 161–168; b) C. Puder, S. Loya, A. Hizi, A. Zeeck, Eur. J. Org. Chem. 2000, 729–735.
- [4] T. Ueno, H. Takahashi, M. Oda, M. Mizunuma, A. Yokoyama, Y. Goto, Y. Mizushina, K. Sakaguchi, H. Hayashi, *Biochemistry* 2000, 39, 5995-6002.
- [5] M. Brasholz, S. Sorgel, C. Azap, H. U. Reißig, *Eur. J. Org. Chem.* **2007**, 3801–3814, and references therein.
- [6] a) M. Chino, K. Nishikawa, A. Yamada, M. Ohsono, T. Sawa, F. Hanaoka, M. Ishizuka, T. Takeuchi, J. Antibiot. 1998, 51, 480–486; b) M. Chino, K. Nishikawa, M. Umekita, C. Hayashi, T.

- Yamazaki, T. Tsuchida, T. Sawa, M. Hamada, T. Takeuchi, *J. Antibiot.* **1996**, *49*, 752–757.
- [7] M. E. Goldman, G. S. Salituro, J. A. Bowen, J. M. Williamson, D. L. Zink, W. A. Schleif, E. A. Emini, *Mol. Pharmacol.* 1990, 38, 20–25.
- [8] M. R. Bardone, E. Martinelli, E. F. Zerilli, C. Coronelli, Tetrahedron 1974, 30, 2747 – 2754.
- [9] a) X. Xie, M. C. Kozlowski, Org. Lett. 2001, 3, 2661–2663;
 b) J. L. Stevens, T. D. Welton, J. P. Deville, V. Behar, Tetrahedron Lett. 2003, 44, 8901–8903;
 c) A. N. Lowell, M. W. Fennie, M. C. Kozlowski, J. Org. Chem. 2008, 73, 1911–1918.
- [10] S. Sorgel, C. Azap, H. U. Reißig, Eur. J. Org. Chem. 2006, 4405 4418
- [11] S. P. Waters, M. W. Fennie, M. C. Kozlowski, Org. Lett. 2006, 8, 3243–3246.
- [12] a) S. P. Waters, M. C. Kozlowski, Tetrahedron Lett. 2001, 42, 3567–3570; b) M. Brasholz, H. U. Reißig, Synlett 2004, 2736–2738; c) M. Brasholz, X. S. Luan, H. U. Reißig, Synthesis 2005, 3571–3580.
- [13] a) D. H. Qin, R. X. Ren, T. Siu, C. S. Zheng, S. J. Danishefsky, Angew. Chem. 2001, 113, 4845-4849; Angew. Chem. Int. Ed. 2001, 40, 4709-4713; b) T. Capecchi, C. B. de Koning, J. P. Michael, Tetrahedron Lett. 1998, 39, 5429-5432; c) G. L. Zhou, D. P. Zheng, S. J. Da, Z. X. Xie, Y. Li, Tetrahedron Lett. 2006, 47, 3349-3352; d) Y. Zhang, J. J. Xue, Z. J. Xin, Z. X. Xie, Y. Li, Synlett 2008, 940-944; e) S. P. Waters, M. W. Fennie, M. C. Kozlowski, Tetrahedron Lett. 2006, 47, 5409-5413.
- [14] K. Y. Tsang, M. A. Brimble, J. B. Bremner, Org. Lett. 2003, 5, 4425–4427.
- [15] a) C. C. Lindsey, K. L. Wu, T. R. R. Pettus, Org. Lett. 2006, 8, 2365–2367; b) S. Sorgel, C. Azap, H. U. Reißig, Org. Lett. 2006, 8, 4875–4878.
- [16] C. Venkatesh, H. U. Reißig, Synthesis 2008, 3605-3614.
- [17] T. Siu, D. H. Qin, S. J. Danishefsky, Angew. Chem. 2001, 113, 4849–4852; Angew. Chem. Int. Ed. 2001, 40, 4713–4716.
- [18] S. Akai, K. Kakiguchi, Y. Nakamura, I. Kuriwaki, T. Dohi, S. Harada, O. Kubo, N. Morita, Y. Kita, Angew. Chem. 2007, 119, 7602-7605; Angew. Chem. Int. Ed. 2007, 46, 7458-7461.
- [19] K. Y. Tsang, M. A. Brimble, Tetrahedron 2007, 63, 6015-6034.
- [20] D. L. J. Clive, A. Khodabocus, P. G. Vernon, A. G. Angoh, L. Bordeleau, D. S. Middleton, C. Lowe, D. Kellner, J. Chem. Soc. Perkin Trans. 1 1991, 1433–1444.
- [21] D. C. K. Rathwell, K. Y. Tsang, K. W. Choi, P. D. W. Boyd, M. A. Brimble, *Acta Crystallogr.* 2008, *E64*, o1929.
- [22] M. Kidwai, P. Kumar, S. Kohli, J. Chem. Res. Synop. 1997, 24–25.
- [23] R. N. Khanna, K. P. Singh, S. K. Yadav, S. Srinivas, Synth. Commun. 1989, 19, 3151–3157.
- [24] V. Bansal, J. Sharma, R. N. Khanna, J. Chem. Res. Synop. 1998, 720-721.
- [25] I. C. Tornieporth-Oetting, T. M. Klapötke, Angew. Chem. 1995, 107, 559-568; Angew. Chem. Int. Ed. Engl. 1995, 34, 511-520.
- [26] a) J. F. Burnett, R. E. Zahler, *Chem. Rev.* 1951, 49, 273-412;
 b) N. D. Pokhilo, A. Y. Yakubovskaya, V. A. Denisenko, V. P. Anufriev, *Tetrahedron Lett.* 2006, 47, 1385-1387.
- [27] W. Yu, Y. Mei, Y. Kang, Z. Hua, Z. Jin, Org. Lett. 2004, 6, 3217–3219.
- [28] M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J. Am. Chem. Soc. 1996, 118, 9509 – 9525.